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1. INTRODUCTION

The free vibration of planetary gears with equally spaced planets has been extensively
studied [1}5]. In a recent study, the highly structured free-vibration properties were
rigorously characterized in reference [4]. These special properties result from the cyclic
symmetry of planetary gears. Because of certain design purposes and assembly limitations,
however, the planets are sometimes unequally spaced and the cyclic symmetry is lost. The
free vibration of systems with unequally spaced planets has not been previously
investigated, and the question remains of how the highly structured free-vibration
properties of equally spaced planet systems change due to unequal planet spacing. This
technical note analytically investigates this question. A case of particular interest is
diametrically opposed planets with each pair of planets on the ends of a carrier diameter.
A lumped-parameter model of planetary gears with N planets is shown in Figure 1. Details
of the dynamic model are given in reference [4]. x
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where M, K are inertia and sti!ness matrices, and u
i
are natural frequencies. p

h
, h"c, r, s,

1,2, N, are modal de#ections of the carrier, ring, sun, and planets.

2. EQUALLY SPACED PLANETS

When all planets are equally spaced, the system has cyclic symmetry and its natural
frequencies and vibration modes have a well-de"ned structure [4] as summarized below.

(1) Three degenerate natural frequencies have multiplicity N!3. Their associated
modes are planet modes (Figure 2(a)) in which only the planets de#ect; the carrier, ring,
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Figure 1. Lumped parameter model of planetary gears and system co-ordinates. All translational co-ordinates
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and sun have no motion. The component modal de#ections have the form

p
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, (2)

where w
n
are scalars to be determined (w

1
"1).

(2) Six distinct natural frequencies have multiplicity 1. Their associated modes are
rotational modes (Figure 2(b)) which have pure rotation (no translation) of the carrier,
ring, and sun. All planets have identical motion. The component modal de#ections
have the form
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(3) Six degenerate natural frequencies have multiplicity 2. Their associated modes are
translational modes (Figure 2(c, d)) which have pure translation (no rotation) of the
carrier, ring, and sun. For a pair of degenerate orthonormal (/T
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3. ARBITRARILY SPACED PLANETS

In general, much of the above well-de"ned structure of the natural frequency spectra and
vibration modes is lost when the planets are arbitrarily spaced. A notable exception is the
planet modes. Additionally, for the practically important case of diametrically opposed
planets, the free vibration retains its unique properties. The analytical procedure employed
here is to substitute candidate vibration modes directly into equation (1) to verify that they
are true modes. Expansion of equation (1) into N#3 groups of equations associated with
the individual components gives
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where the summation index n ranges from 1 to N throughout this paper. Components of the
3]3 submatrices in equations (5)}(8) are given in reference [4] and used in the subsequent
analysis.

3.1. PLANET MODES

Insertion of equation (2) into equations (5)}(8) and algebraic manipulation yield the
reduced eigenvalue problem for planet modes,
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Equations (9) and (10) are decoupled. The under-determined equations (9) have N!3
independent sets of non-trivial solutions for the w

n
. For each of the three eigensolutions

(u
i
, p

1
) solved from equation (10), N!3 independent planet modes can be constructed

according to equation (2). Note that equation (10) is independent of the planet spacing t
n
, so

only the coe$cients w
n
obtained from equation (9) are a!ected by t

n
. As for planetary gears

with equally spaced planets, systems with arbitrary planet spacing always have three sets of
planet modes of the form (2) with multiplicity N!3.

3.2. ROTATIONAL MODES

In general, the rotational and translational modes couple together for arbitrary planet
spacing and no special modal structure or natural frequency multiplicity can be identi"ed.
For certain planet spacing, however, they still have distinguishing properties. A case of
particular interest is that of diametrically opposed planets, which is common in industrial
applications. Consider a system with each of N/2 pairs of planets located along arbitrarily
oriented diameters. A pair of opposing planets have the position relation t
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To check the validity of equation (3), it is substituted into equation (5). The resulting
component equations are
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Equations (12) and (13) vanish as a result of equation (11) and only equation (14) remains.
Similarly each of equations (6) and (7) reduce to one equation
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Using equations (3) and (11), all the equations in equation (8) are equivalent and can be
represented by any one of them, say n"1,
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Equations (14)}(17) comprise a reduced eigenvalue problem that yields six eigensolution
pairs (u
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]T). From these eigensolutions, six rotational modes /
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are

obtained according to equation (3). Equations (14)}(17) are independent of the planet
spacing angles t

n
and are identical to those for equally spaced planets. Accordingly, these

natural frequencies and vibration modes are the same as for equally spaced planets. The
critical condition in the above derivation is actually equation (11), not diametrically
opposed planets. Thus, more generally, systems satisfying equation (11) have six rotational
modes with property (3). For arbitrarily distributed planets not satisfying equation (11),
rotational modes do not exist.

3.3. TRANSLATIONAL MODES

While the translational modes couple with the rotational modes for truly arbitrary planet
spacing, they retain their structure for systems satisfying equation (11). The notable
di!erence with equally spaced planet systems is that the natural frequencies are no longer
degenerate because the cyclic symmetry is disturbed. To start with, the planet de#ection
relations in a translational mode are derived from equation (4). For any three planets i, j, k,
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Eliminating p
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from equation (18) yields
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so the nth planet de#ection can be expressed as a linear combination of p
1
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. The

component modal de#ections for a translational mode become
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Equations (20) and (11) give +p
n
"0, a result that is necessary in the algebraic reductions

that follow. Similar to the derivation of equations (12)}(16), the third equation in each of
equations (5)}(7) vanishes and only six equations remain:
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by equation (20). Use of equations (20) and (11) in

equation (8) for di!erent n results in only two independent equations [4]. Thus, equation (1)
reduces to 12-degree-of-freedom eigenvalue problem consisting of equations (21)}(23) and
(8) for n"1, 2. Twelve natural frequencies u

i
and corresponding modes
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] are obtained. The complete vibration modes are

constructed according to equation (20). This reduced eigenvalue problem is di!erent from
those obtained for equally spaced planets and has no symmetry between x

h
and y

h
, h"c, r,

s. Consequently, the 12 natural frequencies associated with the translational modes are
distinct, in general. Therefore, planetary gears with planet positions satisfying equations (11)
(for example, diametrically opposed planets) have 12 distinct vibration modes that have the
special structure (20) of a translational mode.

4. EXAMPLE

As an example, the planetary gear used in a U.S. Army helicopter is studied. The system
has four planets and a "xed ring; the parameters are given in reference [4]. The "rst case
considers equally spaced planets and typical vibration modes are shown in Figure 2. In the
second case, the planets are diametrically opposed with position angles 0, 80, 180, and 2603.
The planet mode natural frequencies [Figures 2(a) and 3(a)] are the same as for equally
spaced planets; the vibration modes change slightly because the coe$cients w

n
of the planet

de#ections are altered. The rotational modes and their associated natural frequencies
Figures 2(b) and 3(b) are identical. Comparing Figures 2(c, d), 3(c, d), the translational
modes still have well-de"ned structure with diametrically opposed planets. The degenerate



Figure 2. Typical vibration modes for equally spaced planets. The movements of the carrier and ring are not
shown in order to clarify the "gures. Dotted lines are the equilibrium positions and solid lines are the de#ected
positions. Large dots represents the component centers. (a) Planet mode (6981 Hz), (b) rotational mode (1661 Hz)
and (c), (d) a pair of translational modes (8251 Hz).
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translational mode natural frequencies split into distinct ones as a result of the unequal
spacing.

5. DISCUSSION

The unique modal properties of planetary gears derived previously for equally spaced
planet systems are preserved in certain unequally spaced planet systems. Planet modes
of multiplicity N!3 are remarkably insensitive to planet location and retain their
special properties for arbitrary planet spacing. Coupling between rotational and
translational modes occurs for arbitrary planet spacing, and distinct properties cannot
be identi"ed. For systems satisfying equation (11), however, rotational and translational
modes have structured properties. This includes the common case of diametrically opposed
planet pairs.

An important implication of these results is on the use of planet phasing to suppress
certain vibration modes in planetary gear response [6}9]. The most recent of these studies
[9] considers diametrically opposed planet systems. Because the special properties of
rotational and translational modes are preserved for such systems, conclusions regarding
the e!ectiveness of planet phasing to eliminate excitation of these modes under operating
conditions are possible.



Figure 3. Typical vibration modes for diametrically opposed planets. The "gure description is the same as in
Figure 2. (a) Planet mode (6981 Hz), (b) rotational mode (1661 Hz), (c) translational mode (8529 Hz) and (d)
translational mode (7929 Hz).
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